Building robust functionality in synthetic circuits using engineered feedback regulation
نویسندگان
چکیده
منابع مشابه
Boosting functionality of synthetic DNA circuits with tailored deactivation
Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play ...
متن کاملA synthetic integral feedback controller for robust tunable regulation in bacteria
We report on the first engineered integral feedback control system in a living cell. The controller is based on the recently published antithetic integral feedback motif [1] which has been analytically shown to have favorable regulation properties. It is implemented along with test circuitry in Escherichia coli using seven genes and three small-molecule inducers. The closed-loop system is highl...
متن کاملEngineering robust and tunable spatial structures with synthetic gene circuits
Controllable spatial patterning is a major goal for the engineering of biological systems. Recently, synthetic gene circuits have become promising tools to achieve the goal; however, they need to possess both functional robustness and tunability in order to facilitate future applications. Here we show that, by harnessing the dual signaling and antibiotic features of nisin, simple synthetic circ...
متن کاملSynthetic in vitro circuits.
Inspired by advances in the ability to construct programmable circuits in living organisms, in vitro circuits are emerging as a viable platform for designing, understanding, and exploiting dynamic biochemical circuitry. In vitro systems allow researchers to directly access and manipulate biomolecular parts without the unwieldy complexity and intertwined dependencies that often exist in vivo. Ex...
متن کاملDesign and Test of New Robust QCA Sequential Circuits
One of the several promising new technologies for computing at nano-scale is quantum-dot cellular automata (QCA). In this paper, new designs for different QCA sequential circuits are presented. Using an efficient QCA D flip-flop (DFF) architecture, a 5-bit counter, a novel single edge generator (SEG) and a divide-by-2 counter are implemented. Also, some types of oscillators, a new edge-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Opinion in Biotechnology
سال: 2013
ISSN: 0958-1669
DOI: 10.1016/j.copbio.2013.02.025